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and different processes seem to share similar rates. This is why, in general, very
few higher crossings are used in testing goodness of fit.

The present paper gives an overview of our previous work particularly

Kedem and Reed (1985) and Kedem (1985) to which the reader is referred for mathematical
details and more examples.
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Abstract

2 The oscillatory appearance of stationary time series is captured

very economically by only a few higher order crossings which in addition

contain a great deal of the spectral content of the process. A useful

approximation to the variances of higher order crossings is discussed

and is applied in the construction of probability limits for the

hypothesized higher order crossings. From this, a graphical display

of higher order crossings together with their probability limits provide

a fast goodness of fit test. Examples illustrate the applicability of this

device.
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1. Introduction.

There has been a growing interest in graphical methods in time series

analysis and especially so since the popularization of electronic devices with

graphics capabilities. In following this trend, the present article discusses

a cetain zero-crossings based graphical technique useful in testing for

goodness of fit of time series models. The idea is to use plots of higher

order crossings which are akin to plots of the correlogram and spectal densities

or the periodogram, but with the advantage of great simplicity. Under the

Gaussian assumption, the sequence of expected higher order corss.ings is equivalent

to the autocorrelation function and hence to the normalized spectral distribution

function, but it summarizes the data differently. In this regard, the monotone

property -of higher crossings playsan instrumental role for the initial rate of

increase exhibited by higher crossings proves to be an effective summary feature.

As the higher crossings continue to increase their rate loses its discrimination

potency and different processes seem to share similar rates. This is why in

general very few higher crossings are used in testing goodness of fit.

The present paper gives an overview of our previous work particularly

Kedem and Reed (1985) and Kedem (1985) to which the reader is referred for

mathematical details and more examples.
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2. Plots of Higher Order Crossings.

Let {z }, t = 0, ± 1,..., be a zero mean stationary Gaussian process with

correlation function pj and normalized spectral distribution function F,

and let V be the difference operator, Vzt = zt - zt I . It is convenient

to introduce the clipped binary process

I, Vk-lz > 0
xk = , k = 1,2,.

0, otherwise

which gives rise to the indicator at time t

1 (k) x(k)
d(k) t t-l

0, otherwise.

The higher order crossings of order k, Dk,n ' is defined by

Dk~ = d (k ) +...+ d (k)

*k,n 2 n

It is seen that Dk,n counts the number of axis-crossings in the (k-l)'th

k-l k-1
differenced series V Z 1 9...7 IV Zn DI n then is the usual number of

zero- or axis-crossings by the original series z,...,z n

From the point of view of the theory of stationary Gaussian processes, the

sequence of higher order crossings is equivalent to the correlation and spectral

structures. This is stated precisely in

Theorem 1. Let {z t} be a zero mean stationary Gaussian process with correlation

function Oj" Then the sequence {p.} is completely ditermined from the sequence

{E(Dj,n). That is, Ok is determined by E(D1 ,n ) , . . . , E(Dk , n ).
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Proof: From Kedem and Slud (1981),

( ) (2k.+ 2k+2k kCos Dk+l, n  -kl 1(k) k-2)] .+(-

n-i 2k) 2 2k k (1.+()k2k
Lk - 1 k-1 ) --

and the P can be determined recursively from the E(Dk,n). U

Obviously it is also true, from (1), that knowledge of {p } is equivalent

to knowledge of the sequence {E(D j,n ) }. It follows that F is completely

determined by the sequence of expected higher order crossings. This is

summarized by the symbolism

{E(D J,n} { k} . F.

Thus, exactly for the same reasons that plots of pk and F are extensively

used in time series analysis, it is useful to observe plots of higher order

crossings too.

The main thing to observe in plots of higher order corssings is the rate

at which they increase and the starting point D ,n . The fact that higher

order crossings tend to increase can be attributed to the general fact that

D. <D +1Sj,n j+l,n

with probability one. Hence the D. tend to increase with j for fixed

but large n. See also Kedcem and Slud (1981).

It is instructive to observe plots of higher order crossings and thus

motivate the central idea of this paper. Figure 1 displays plots of ten

I
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higher order crossings D O11000 ,... ,D1 0,1 0 00 , obtained from first order

autoregressive processes with different parameter values 4. It is seen that

the initial rate of increase and starting point differ from process to process,

but that as the order increases the rate is almost independent of the parameter.

This same behavior has been observed in numerous cases which may be interpreted

to mean that only the very first few higher crossings carry sufficient

information which discriminates clearly between different processes.

Accordingly, it is suggested that plots with as few as six D.j ,n

can be useful in goodness of fit testing. At the same time it should be noted

that higher order crossings of high order carry information too but this

information is less amenable and will not be used here.

800.

.50
600-

.25

200

I 2 3 4 5 6 7 8 9 10
I I 1 I I I I I I

Figur_. Plots of D j=l, .. ,10, from z z + ut  u are

1. j,1000' 
t t-t

independent N(0,1) random variables and = 0.75,0.5,0.25,0,-0.25,-0.5,-0.75.
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3. The variance of higher order crossings.

The probability distribution of the D. is quite intractable and we21,n

shall concentrate on the more modest problem of approximating the variance of

higher order crossings needed for the proposed goodness of fit test.

In general, the variance of D. is a function of the fourth order

cumulant function K ()(r,s,t) of {X 3j }- which is summable under appropriate
x t

moment conditions. Thus for j = 1 the following asymptotic result was proved

in Kedem (1980).

Theorem 2. If p. is absolutely summable then

CO

Yo , (i) (,-k,l-k)j < o

k= "O

and

DI, n -E(D n ) L N(0, 212 n

nI

where
2o i -k2 -I *-il 2 (1)

C1 1 --2 1 Ksin + sin Qkl sin pk+1 + 4 K ,-k,l-k).
7T k=- o l x

The same result applies to every D. provided the correlation functions of
2,n

fv J-zt} decays to zero fast. However K J) is not known in general which makes

the above result impractical.

Another approach is to hold 0 fixed and let j increase. In this case

it is possible to obtain a useful asymptotic result under the assymption of

m-dependence. Assume that 7T is a point of increase for F and let

(k) p (x(k) 1  (k)
r t t-j

ft . , -. -*'.* . * : *
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Then (k) 0 as k o and it was shown by Kedem and Reed (1985) that

d(k) d(k)) (k (2)coy (d t , s 0(2

(k)

The proof of this fact depends on the differential properties of j, the

correlation function of {Vz t }. (2) readily yields.

Theorem 3. Let {z t } be an m-dependent stationary Gaussian process and assume

that -a is a point in the support of F. Then for fixed n

lim Var(D k  )

-o o ( n - l ) A k ) ( l _A k ) )

1 1

This result was used in the construction of probability limits for the higher

crossings under the hypothesis of white noise. However the assumption of

m-dependence cannot always be verified and another approximation is called for.

A rather close approximation to the variance of D. can be provided ifj ,n

It is assumed that the binary sequence (k) } is a Markov chain. This first

order approximatiot? has been found very satisfactory by an extensive simulation.

Define the two parameters associated with the chain,

(k) (k) (k) (k)
1-( (k)

(k) - 3 k  2

V 2(1_(k))

When the pro(ess ia i stationary Gauss ian autoregressive-moving average proce!.s.

with known (or hypothesized) parameters, p(k) and v (k) are known too

,x lX] i.ityly. Then if {d(k)I is a Narkov chain it can be shown (Kedem (1985))
t

....
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That

(k)(k 2 (k) (k)(v(k)p(k)
Var(Dk,) = (n-l)p q + l_ )(k) p [(n-1)-Vk n ]  (3)

where

q(k ) v (k) n( (k)
k,n q (k)- -l]/(l_(k))

This approximation has been compared (Kedem (1985)) with actual estimates

obtained from 100 independent realizations each of length n = 1000. The

results are given in Table I. Although E(D. j1 0 00 ) are known explicitly when

the parameters are known, these expectations are estimated too as a check

of the whole simulation. It is seen that (3) agrees well with the simulation

results. An algorithm for obtaining p(k) V(k) is given in Kedem (1985).

..

. . . . ,i
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1

AA
Series j E(Di 0 0 0 ) E(Dj 1000 {Var(D i

J j10) j10) {Var(D j 1 0 0 0)} I~rDj, 1000
From 100 From (3) From 100

Realizations Realizations

White 1 500 497 15.81 15.96

Noise 2 666 666 13.15 13.63
3 732 732 12.16 12.53
4 769 770 11.57 11.49
5 794 795 11.18 11.05

6 813 814 10.82 10.00

1 424 425 9.64 9.670.4 2 484 485 9.38 9.13
=04 3 536 537 10.29 10.81

4-0.7 594 594 11.27 12.72
5 651 652 11.87 12.02
6 702 701 12.04 11.34

1 552 552 14.62 14.74
0.1 2 679 679 12.96 12.87
0.5 3 737 737 12.09 12.05

4 773 772 11.27 11.52

5 797 792 10.20 11.12
6 814 814 10.15 10.80

ARMA(2,2) 1 884 883 10.04 10.51
2 897 897 9.20 ').53

1 3 903 903 8.84 9.01

4 908 908 8.60 8.50
S-0. 91 911 8.43 8.47

= 02 6 914 914 8.29 8.38

r) 2 0.1
2"

Table I . Comparison of (3) with the ,ariane ,obtained from 100 independent
realizations of size 1000. E (Dj. 0) and E(U O) are rounded to the

J ,l000 10(
learest I , .
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4. A Graphical Goodness of Fit Criterion.

The proposed goodness of fit test is based on deviations of the observed

path of higher crossings from the expected path where the later is obtained

under the hypothesis of an assumed model. Marked deviations of the observed

path from the expected one suggest that the observed process does not

oscillate as expected. The closeness of the two paths can be measured by

appealing to (3) and to conditions under which the D. are asymptotically
J,n

normal. It can be shown, using the technique in Cuzick (1976) that when

1z is Gaussian the condition 'P < implies the asymptotic normality

of the D kn* It follows that approximate 95% probability limits for Dk

are for each k and sufficiently large n

(n-l)p (k)+ 1.96{Var Dk,n 1  (4)

where Var(D k,n) is given by (3). When at least one observed D. n,j=l,...,6,

lies outside the limits (4) the assumed model under which (4) was derived is

rejected. Before discussing the power of this test it is illustrated by a

few examples.

4. 1 Examoles.

Annual Mean Temperature

The graph of the annual mean air temperature from 1781 to 1980 at

}ohenpeissenberg, Germany, is given in Figure 2. Actually the observations for

1811 and 1812 are missing and were replaced by the mean of neighboring

observations. This has only a very small effect on the sequence of higher

cross i ngs.

z..



11W

9

h1

5-

3

50 100 150

Figure 2. Annual Temperature Series. n = 195.

(Source: Report bt155 of the Deutschen Wetterdienstes, West Cermay (1981).)

Since annual temperature is hard to predict, we could ask the following

question:

Does the series oscillate as white noise? The answer is obtained from Figure 3

where it is seen that the higher order crossings are well within the bounds (4)

so that at least in this sense the series resembles white noise. For comparison,

the figure portrays the higher crossings of simulated white noise which fall

within the bounds too as expected.

Di FROMDA FROMWN LIMITS
10 DATA.--

-150 -- _

-. 100 , ~ Dj FROM
- SIMULATED WN

% 5u

I 2 3 4 5 6
I I I I I I

! i ,,ir ' ' . I r,,, !: I y t li it, I I tl Ii ,I,,I& {r L. r 'l i :: f romn the t emnperat ore

," , ", .2 ',.'2,2 " .'""" . "." "" . . . ." ." . -... .'. . . . .. " ," . ."."" ". ,". " • " . .. " . -. ""
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ARMA Models.

Figure 4 shows the probability limits (4) under various hypotheses.

These are white noise, second order autoregressive process with parameters

*' 0.4 and -0.7, and second order autoregressive moving average process with

parameters * = (-1.4, -0.5), e = (0.2, 0.1). The actual Dj,450 were

obtained from simulated data given in an appendix in Priestly (1981). The

three paths fall well within their respective limits and the corresponding

hypothesises are accetped.

ARMA (2,2)
-400 . . . . . . ..

0300 -_--

100

I 2 3 4 5 6
S I I I I I

Piyurc 4. Sample higher order crossings paths fall within their respective limits.

It is seen that the three processes display different oscillation patterns

which are captured very economically by only six higher order crossings where the

ARMA (2,2) process is most oscillatory while the AR(2) is much smoother.

Siinjia1 _l!cetio-n.

Figure 5 displays two series which appear to be very similar except

perhaps for scale. However their higher order crossings quickly reveal that

the first one oscillates as white noise while the other oscillates roughly

as a low order autoregressive process. This is illustr;lted in Figure 6.

. .|.-- - ---.. . . . .
F. . . . . .
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-500 LMT

3400 /jFO

300

1 2 3 4 5 6

fi&ture_6. The higher order crossings paths of series (a), (b). The first
path is within white noise bounds.

Di1Agonstic- Check.

In testing the goodness of fit of a model one runs a residual analysis

*which usually tests whether the residual series constitutes white noise.

Consider series A, D) in Box and Jenkins (1976). The fitted models there

(p. 293) are

series A: Vz =u 0 .7u
t t t-l

series D: z 0 .87z 1.17 + u
tt-1 t

b ~ where fu is the residual series. Figure 7 however reveals that the two
t

*residual series are not quite white as is signified by the axis-crossings

themselves- wli cli .,re outside the limits (4) . It is interest ing to note

t hough that thle rest of the highier order crossings behave as those of white

noi i!;e. rhiu ; , ux, cpt tor smallevr 1) t tIle two res idna, I serT-ie's ()sci I iteS

as5- wh tt. 1(

. . . . .%
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-250 SERIES D-250

200

SERIES
150

2 3 4 5 6
I I I 1 I

Figure 7. Diagnostic check applied to the residuals of series A (n-177)
and series D (n=290). D is outside the limits (4) for white noise.

4.2 Power Simulation.

The limits (4) provide approximate 95% bounds for each D . HoweverIn
°

our test is based on D simultaneously and the hypothesizedour estis asedon 1,n  .,6,n

model is rejected if at least one D. falls outside the probability
3,n

bounds. It is expected that a test which is based on more than a single

D. has a higher probability of rejecting a true hypothesis than 0.05
j,n

and in fact our experience indicates that with six D. this probability
3,n

is about 0.1. The exact probability is still an open problem at present.

An indication of the power is provided in Table II which gives the power

for tesing the hypothesis of white noise where the alternative is the indicated

process. The power is estimated from 50 independent series each of size

450. Similar results were obtained for greater series lengths.
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Process Power

White Noise .10

AR(1), c = .05 .26

MA(1), 0 = .1 .40

AR(l), ( = .2 .90

AR(1), = .5 1.00

AR(2), = . = -.15 .88

ARMA(1,1), 0F = .1, 01 = -.1 .86

ARMA(2,2). ! .1, (F2 = -.4 1.00

01 0, '2 3

ARMA(2.2), = . , = -.2 .88

() = .2, 02 .

Table II. Power sinulation for testing white noise versus the indicated

process.

S.
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